

 Navigation

 	
 index

 	
 next |

 	Projy 0.3 documentation

Projy

Projy is a template-based skeleton generator.
In one command line, you can generate project skeletons
like Python packages, LaTeX document or any file structure
composed of directories and files.

Each file is generated by a different template.
It uses the simple core templating system from Python,
nothing fancy on that part. You can easily add new templates
and new ways to collect data to insert in the created files.
As much as possible, Projy tries to be simple to use and extend.

Content

	Installation
	Pip and Distribute

	Play the game

	Usage
	A Python package example

	A more elaborate example: customizing the substitutions

	Options

	Available templates
	Project templates

	File templates

	Collectors

	Extending Projy
	Project templates

	File templates

	Data collectors

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Stéphane Péchard.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Projy 0.3 documentation

Installation

If you are familiar with Python, it is strongly suggested that you install
Projy in virtualenv [http://pypi.python.org/pypi/virtualenv].

Pip and Distribute

To install Projy system-wide, just type:

$ sudo pip install projy

If no pip available, try easy_install:

$ sudo easy_install projy

Play the game

If you want to code, hack, enhance or just understand Projy, you can get
the latest code at Github [http://github.com/stephanepechard/projy]:

$ git clone http://github.com/stephanepechard/projy

Then create the local virtualenv and install Projy:

$ cd projy && source bootstrap && fab install

 Copyright 2012, Stéphane Péchard.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Projy 0.3 documentation

Usage

As an example, let’s create a Python package. The Projy template mostly
follows recommendations from The Hitchhiker’s Guide to Packaging [http://guide.python-distribute.org/].

A Python package example

Use simply:

$ projy PythonPackage TowelStuff

In the same directory as you typed this command, you now have a
TowelStuff directory, with the following structure:

TowelStuff/
 bin/
 bootstrap
 CHANGES.txt
 docs/
 index.rst
 LICENSE.txt
 MANIFEST.in
 README.txt
 setup.py
 towelstuff/
 __init__.py

Each file has been created with a specific template, so the package is
fully functional, yet empty. Now, let’s give a little explanation
on each file. You can find further information
here [http://guide.python-distribute.org/creation.html].

bin/, docs/ and towelstuff/ directories

	Three directories are created by default:

	
	bin/ [http://guide.python-distribute.org/creation.html#bin-description]
contains your package’s scripts ;

	docs/ [http://guide.python-distribute.org/creation.html#docs-description],
contains the documentation you write for the package. A primary
index.rst file waits for you to write into it. Yes, it uses
reStructuredText [http://docutils.sourceforge.net/rst.html] format.

	towelstuff/ [http://guide.python-distribute.org/creation.html#towelstuff-description],
is where you put the files of your package. It is the lower case
version of the project name. By default, it already contains
an empty __init__.py file.

See the links for more information.

bootstrap

This file is a little treat, not present in The Hitchhiker’s Guide
to Packaging [http://guide.python-distribute.org/]. Using the
BootstrapScriptFileTemplate template, it is a simple bash file
creating a virtual environment easily. Use it with a simple:

$ source bootstrap

	By default, it installs three packages from pypi [http://pypi.python.org/]:

	
	nose [http://nose.readthedocs.org/en/latest/] is “nicer testing for Python” ;

	pylint [http://pypi.python.org/pypi/pylint], a Python code static checker ;

	sphinx [http://sphinx.pocoo.org], the Python documentation generator.

Everything you need to write quality code :-) Of course, you can add
any other package you may need, it’s up to you. You can even
externalize this list of package to a requirement
file [http://www.pip-installer.org/en/latest/requirements.html].

CHANGES.txt

The template of the CHANGES.txt file [http://guide.python-distribute.org/creation.html#changes-txt-description]
simply contains:

v<version>, <date> -- Initial release.

LICENSE.txt

By default, the Python package template contains the GPL v3
as LICENSE.txt. Change it as your convenience.

MANIFEST.in

The manifest [http://guide.python-distribute.org/creation.html#manifest-in-description]
is an important file that contains this:

include CHANGES.txt
include LICENSE.txt
include MANIFEST.in
include README.txt
recursive-include bin *
recursive-include docs *
recursive-include towelstuff *

README.txt

The usual README file [http://guide.python-distribute.org/creation.html#readme-txt-description],
written in reStructuredText [http://docutils.sourceforge.net/rst.html] format.

setup.py

The setup.py [http://guide.python-distribute.org/creation.html#setup-py-description]
file created from the template contains:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	# -*- coding: utf-8 -*-
""" $project setup.py script """

system
from distutils.core import setup
from os.path import join, dirname

setup(
 name='TowelStuff',
 version='0.1.0',
 author='Stéphane Péchard',
 author_email='stephanepechard@provider.com',
 packages=['towelstuff','towelstuff.test'],
 url='http://',
 license='LICENSE.txt',
 long_description=open(join(dirname(__file__), 'README.txt')).read(),
 install_requires=[''],
 test_suite='towelstuff.test',
)

A more elaborate example: customizing the substitutions

You can modify the substitutions used by the template through the
command line:

$ projy PythonPackage TowelStuff "author,Monty" "date,2012-06-18"

Then the substitutes author (normally get from
git [http://git-scm.com/]) and date (defaulted to the current
day) are defined by the given values, not those computed by Projy.
The format of such substitutions should be "key,value".
Neither the key or the value should therefore include a comma.
Leading and trailing spaces are removed from both key and value.

To know which substitutions can be overwritten this way, use the -i
option as described in the dedicated section. You can add substitutions
that are not listed with the -i option but they won’t have
any effect if the template file does not consider them.

Options

Projy comes also with some useful command line option.

Listing templates

Type:

$ projy -l

and you’ll see the list of available templates in your installation.
That’s an easy way to copy/paste the name of the template
you want to use on the next command.

What’s inside a template

Type:

$ projy -i PythonPackage

and you’ll see the detailed structure of the PythonPackage template.
It shows the created directories and files, with the substitutions
included in the template.

 Copyright 2012, Stéphane Péchard.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Projy 0.3 documentation

Available templates

Here is a list of all the templates, but also collectors,
integrated into Projy at the moment. Of course, you can propose
new templates, they’ll be integrated into Projy.

Project templates

Project templates are used to create a files/directories structure.
That’s the second argument of the command line. For this list,
the projects we create are all called TowelStuff.
They are somewhat ordered by the programming language they use.

LaTeX

These are LaTeX [http://www.latex-project.org/] templates.

LaTeX book

The command:

$ projy LaTeXBook TowelStuff

produces:

TowelStuff/
 TowelStuff.tex - LaTeXBookFileTemplate
 references.bib - BibTeXFileTemplate
 Makefile - LaTeXMakefileFileTemplate

Note: the Makefile uses Latexmk [http://www.phys.psu.edu/~collins/software/latexmk-jcc/].

Python

These are Python [http://python.org] templates.

Python package

The command:

$ projy PythonPackage TowelStuff

produces:

TowelStuff/
 bootstrap - BootstrapScriptFileTemplate
 CHANGES.txt - PythonPackageCHANGESFileTemplate
 LICENSE.txt - GPL3FileTemplate
 MANIFEST.in - PythonPackageMANIFESTFileTemplate
 README.txt - READMEReSTFileTemplate
 setup.py - PythonPackageSetupFileTemplate

TowelStuff/docs/
 index.rst

TowelStuff/towelstuff/
 __init__.py

Python script

The command:

$ projy PythonScript TowelStuff

produces:

TowelStuff/
 TowelStuff.py - PythonScriptFileTemplate

Fabric file

The command:

$ projy Fabfile TowelStuff

produces:

/
 fabfile.py - FabfileFileTemplate

This one is probably not generic enough, I added some stuff I use.
Feel free to customize it.

Bootstrap

The command:

$ projy Bootstrap TowelStuff

produces:

/
 bootstrap - BootstrapScriptFileTemplate

Yes, the name has no impact on the produced file.
Don’t hesitate to make it short!

Projy itself!

Finally, a bit of a special template, which lets you create a Projy template
and an empty file template from Projy itself. Call it meta if you want :-)
See Extending Projy to know how such templates are meant to be written.

The command:

$ projy ProjyTemplate TowelStuff

produces:

/
 TowelStuffTemplate.py - ProjyTemplateFileTemplate
 TowelStuffFileTemplate.txt

File templates

LaTeX files

	BibTeXFileTemplate

	LaTeXBookFileTemplate

	LaTeXMakefileFileTemplate

Python files

	ProjyTemplateFileTemplate

	PythonPackageCHANGESFileTemplate

	PythonPackageMANIFESTFileTemplate

	PythonPackageSetupFileTemplate

	PythonScriptFileTemplate

	FabfileFileTemplate

Bash files

	BootstrapScriptFileTemplate

Text files

	READMEReSTFileTemplate

Licenses

	AGPL3FileTemplate

	ApacheLicenseFileTemplate

	BSDLicenseFileTemplate

	DWTFYWTPLFileTemplate

	GPL2FileTemplate

	GPL3FileTemplate

	LaTeX3LicenseFileTemplate

	LGPL3FileTemplate

	MITLicenseFileTemplate

	MPL2FileTemplate

	PythonLicense2FileTemplate

Collectors

Here is the list of currently available collectors:

	AuthorCollector

	AuthorMailCollector

 Copyright 2012, Stéphane Péchard.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Projy 0.3 documentation

Extending Projy

Writing new templates and data collectors is easy. Let’s continue reviewing our example.

Project templates

Here is the project template used to create a Python package:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	# -*- coding: utf-8 -*-
""" Projy template for PythonPackage. """

system
from datetime import date
parent class
from projy.templates.ProjyTemplate import ProjyTemplate
collectors
from projy.collectors.AuthorCollector import AuthorCollector
from projy.collectors.AuthorMailCollector import AuthorMailCollector

class PythonPackageTemplate(ProjyTemplate):
 """ Projy template class for PythonPackage. """

 def __init__(self):
 ProjyTemplate.__init__(self)

 def directories(self):
 """ Return the names of directories to be created. """
 directories_description = [
 self.project_name,
 self.project_name + '/' + self.project_name.lower(),
 self.project_name + '/docs',
]
 return directories_description

 def files(self):
 """ Return the names of files to be created. """
 files_description = [
 [self.project_name,
 'bootstrap',
 'BootstrapScriptFileTemplate'],
 [self.project_name,
 'CHANGES.txt',
 'PythonPackageCHANGESFileTemplate'],
 [self.project_name,
 'LICENSE.txt',
 'GPL3FileTemplate'],
 [self.project_name,
 'MANIFEST.in',
 'PythonPackageMANIFESTFileTemplate'],
 [self.project_name,
 'README.txt',
 'READMEReSTFileTemplate'],
 [self.project_name,
 'setup.py',
 'PythonPackageSetupFileTemplate'],
 [self.project_name + '/' + self.project_name.lower(),
 '__init__.py',
 None],
 [self.project_name + '/docs',
 'index.rst',
 None],
]
 return files_description

 def substitutes(self):
 """ Return the substitutions for the templating replacements. """
 author_collector = AuthorCollector()
 mail_collector = AuthorMailCollector()
 substitute_dict = dict(
 project = self.project_name,
 project_lower = self.project_name.lower(),
 date = date.today().isoformat(),
 author = author_collector.collect(),
 author_email = mail_collector.collect(),
)
 return substitute_dict

	To write a new template, you have to specify four parts:

	
	the name of the template, which is the name of the class ;

	the directories, files and substitutes functions.

When writing a new template, you can use the self.project_name variable
which contains the name of the project as you typed it.
In our example, it is TowelStuff.

Name of the template

Here it is simply PythonPackageTemplate. This is the name you
type in the command line plus Template at the end. The created template
inherits from the father of all templates, the ProjyTemplate class.

The directories function

	
directories()

	
Returns a tuple containing all the names of the directories to be created.

	Return type:	list of directory names

In our example, the created directories are TowelStuff, TowelStuff/towelstuff and TowelStuff/docs.

The files function

	
files()

	

	This function should return a tuple containing three informations for each file:

	
	the directory the file is in. It is defined as in the directories function ;

	the name of the file ;

	the template of the file, which is not the same as the project template.
See File templates.

	Return type:	list of file names

	In our example, eight files are created:

	
	bootstrap created from BootstrapScriptFileTemplate ;

	CHANGES.txt created from PythonPackageCHANGESFileTemplate ;

	LICENSE.txt created from GPL3FileTemplate ;

	MANIFEST.in created from PythonPackageMANIFESTFileTemplate ;

	README.txt created from READMEReSTFileTemplate ;

	setup.py created from PythonPackageSetupFileTemplate ;

	__init__.py into the TowelStuff/towelstuff directory, created from PythonPackageSetupFileTemplate ;

	index.rst into the TowelStuff/docs directory, created empty.

Details on the content of each file is given on Usage.

The substitutes function

	
substitutes()

	
This function should return a dictionary containing the string substitutions
used in the template.

	Return type:	list of file names

	In our example, the substitutions made in all the created files are:

	
	$project is replaced by TowelStuff ;

	$project_lower is replaced by towelstuff ;

	$date is replaced by the current date, in the format 2012-11-23 ;

	$author is replaced by what returns the AuthorCollector ;

	$author_email is replaced by what returns the AuthorMailCollector ;

File templates

From all the templated files we created, let’s see how the
PythonPackageSetupFileTemplate is made. Here is its content:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	# -*- coding: utf-8 -*-
""" $project setup.py script """

$project
from $project_lower import __version__

system
try:
 from setuptools import setup
except ImportError:
 from distutils.core import setup
from os.path import join, dirname

setup(
 name=__version__,
 version='0.1.0',
 description='My $project project',
 author='$author',
 author_email='$author_email',
 packages=['$project_lower','$project_lower.test'],
 url='http://stephanepechard.github.com/projy',
 long_description=open('README.txt').read(),
 install_requires=[''],
 test_suite='$project_lower.test',
 classifiers=[
 'Development Status :: 3 - Alpha',
 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)',
 'Programming Language :: Python',
],
)

It is simply the file you want to create with the variables that will
be substitute in the creation process. Each variable should begin
by $ as described in the Template [http://docs.python.org/library/string.html?highlight=template#string.Template]
mechanism. Nothing fancy on this side, as you can see.

Data collectors

A data collector, as its name suggest, collects data. It is used by
Projy to complete the File templates. Here is the data collector
for the author data:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	# -*- coding: utf-8 -*-
""" AuthorCollector class
 Tries to find the program user name, as accuratly as possible.

 Put the functions alphabetical order in the same order as their importance.
 For example here, author_from_git should be taken before author_from_system
 as it is probably better.
"""

system
import getpass
import os
from subprocess import Popen, PIPE, CalledProcessError
parent class
from projy.collectors.Collector import Collector

class AuthorCollector(Collector):
 """ The AuthorCollector class. """

 def __init__(self):
 self.author = None

 def author_from_git(self):
 """ Get the author name from git information. """
 self.author = None
 try:
 # launch git command and get answer
 cmd = Popen(["git", "config", "--get", "user.name"], stdout=PIPE)
 stdoutdata = cmd.communicate()
 if (stdoutdata[0]):
 self.author = stdoutdata[0].rstrip(os.linesep)
 except ImportError:
 pass
 except CalledProcessError:
 pass
 except OSError:
 pass

 return self.author

 def author_from_system(self):
 """ Get the author name from system information.
 This is just the user name, not the real name.
 """
 self.author = getpass.getuser()
 return self.author

A data collector defines as many functions as necessary. In the
case of the author, two ways of finding it are written. The first uses
git [http://git-scm.com/]. As many users of Projy would probably
use it, chances are that its configuration will reflect the author’s
information. As a fallback in case git [http://git-scm.com/] does
not return the wanted data, the user name is taken as
the system current user name. There are probably other methods
to find it, so feel free to propose some more.

Functions are treated in the alphabetical order, which means that the
most accurate functions should come before the least accurate ones.
Of course, one may not always know what the most accurate way of finding
a particular data is. Be smart then!

 Copyright 2012, Stéphane Péchard.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Projy 0.3 documentation

Index

 D
 | F
 | S

D

 	

 	directories() (built-in function)

F

 	

 	files() (built-in function)

S

 	

 	substitutes() (built-in function)

 Copyright 2012, Stéphane Péchard.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

_static/comment-close.png

_static/minus.png

_static/down.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Projy 0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Stéphane Péchard.
 Created using Sphinx 1.3.1.

_static/up.png

